
In-Compute Networking & In-Network 
Computing - the Great Confluence

David Oran
Network Systems Research & Design

June 19, 2019
ACM Multimedia Systems Conference, Amherst MA



2

q Why should we care about merging computing and 
networking?

q Structure of computing platforms and their use for networking

q Structure of networking platforms and their use for computing
q Interesting applications and research in the intersection of 

these two
q Brief digression into Edge Computing

q Big challenges and opportunities going forward

Structure of this Talk

ACM MMSys 2019



Some caveats

ACM MMSys 2019

3

¨ As an “overview” nearly all of the material is cribbed from published 
papers, data sheets, and other people’s talks

¨ Some of this could be considered “blindingly obvious”
¤ So I apologize in advance for likely boredom with parts or all of this talk

¨ The talk is high on opinion and quite possibly low on convincing 
arguments

¨ It’s been pointed out to me many times that I’m long on questions but 
short on answers



So, why should we care about this?

ACM MMSys 2019

4

¨ Applications are becoming more multi-party and distributed
¤ Difficult (and possibly undesirable) to make the network “transparent” to the 

application programmer
n Performance inhomogeneities in both throughput and delay
n Complex partial failures

¤ Programming model only easily exploits localized parallelism
¤ Isolation against competing workloads and resilience against attack requires 

sophisticated features “in” the network
¨ DevOps requires incremental partial deployment

¤ Coordination with network underlays tricky and slows things down
¤ Responsibilities for various security and disaster protection divided organizationally –

partially due to expertise gap and technology differences
¨ Computing and Communications are on different cost/performance trajectories



State of the Art Silicon – Server vs. Switch

¨ 28 Cores @ 2.7Ghz
¤ Turbo to 4.0 GHz
¤ 56 Threads @ 2/core

¨ 39MB L1/L2 Cache
¨ 4.5TB Max DRAM @ 2.9GHz
¨ Features:

¤ SGX, Virutalization, 
¨ TDP 205W! 

¨ 6.5 Tb/s aggregate throughput
¨ Fan-out:

¤ 65 x 100 GE
¤ 130 x 40 GE
¤ 260 x 25 GE

¨ P4 Programmable
¨ TDP ? (I couldn’t find it on the

datasheet) – guess ~120W

5

ACM MMSys 2019

Intel Xeon Platinum 8280L Barefoot Tofino



State of the Art Platform – Server vs. Switch

¨ 4 CPU Sockets
¨ 2 TB Max DRAM
¨ 8 x PCIe
¨ 4-port 10 GE
¨ 2 RU
¨ TDP up to 1600W! 

¨ Throughput:
¤ 12.8 Tb/s 
¤ 4.8 Billion PPS

¨ 64 x 100G QSFP
¨ P4 Programmable
¨ Dual core CPU, 16GB DRAM

6

ACM MMSys 2019

Dell PowerEdge FX Arista 7170-64C



State of the Art Software – Server vs. Switch

¨ Multi-Language
¨ Tenant Isolation
¨ Rich Toolchain
¨ Imperative and functional 

programming models

¨ Limited programmability
¤ P4 – non Turing-complete
¤ Data-flow model only
¤ Unclear composability

¨ Wimpy CPUs
¤ If ASIC has to punt, game over for 

performance
¨ Weak toolchains
¨ Limited/no tenant isolation model

7

ACM MMSys 2019

VMs, Linux, Containers, VPP Arista? Cisco IOS? 



Given this, why do networking on 
servers or computing on switches?

ACM MMSys 2019

8



Why do networking on Servers?

¨ Software packet processing is fast enough for all but highest speed tiers
¤ i.e. < 100 Gb/s on current platforms

¨ Some network functions and topological placements don’t require large 
fan-out
¤ 4-8 ports adequate for many functions
¤ Branch offices, Cloud Datacenter edge, Route servers in IXPs

¨ High-touch networking functions leverage strengths of conventional 
programming approaches
¤ Load balancing
¤ Intrusion detection / firewall
¤ Proxies (e.g. CDN, HTTP(s), TLS termination)

ACM MMSys 2019

9



Three general approaches

¨ Conventional Linux kernel networking
¤ Berkeley Packet Filters
¤ Loadable kernel modules
¤ Smart NICs (SR-IOV, TCP offload, etc)

¨ Container Networking
¤ Virtualized overlay networks with isolation
¤ Multi-tenant scenarios

¨ Kernel Bypass Networking
¤ User-mode complete network switching/routing infrastructure
¤ Direct control of NICs
¤ Very fast and reasonably programmable (OVS, VPP)

ACM MMSys 2019

10



What can you do with this?

ACM MMSys 2019

11

¨ Packet forwarding
¤ IPv4/IPv6, L2 bridging/VLANs
¤ MPLS, Segment Routing
¤ Overlays: LISP, GRE, VXLAN

¨ Packet Firewalls
¨ Network Function Virtualization (NFV) & Service Function Chains (SFC)
¨ Obviously, higher layers too

¤ HTTP Proxies
¤ TLS Termination



A quick look at VPP (FD.IO)

ACM MMSys 2019

12

¨ Direct control of NIC through user-mode driver 
¤ Data Plane Development Kit (DPDK) from Intel
¤ Pin NIC Queues directly to cores
¤ Strict polling with spin-locks (no interrupts!)

¨ Process packets in bunches (next slide for details)
¤ Avoid context switches
¤ Maximize core parallelism

¨ Extensible using modifiable processing graphs
¤ Can do multiple protocol layers without boundary crossings



Processing a vector of packets

ACM MMSys 2019

13

ethernet-
input

dpdk-inputaf-packet-
input

vhost-user-
input

mpls-inputlldp-input
...-no-

checksum

ip4-input ip6-inputarp-inputcdp-input l2-input

ip4-lookup ip4-lookup-
mulitcast

ip4-rewrite-
transit

ip4-load-
balance

ip4-
midchain

mpls-policy-
encap

interface-
output

Packet 0
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5
Packet 6
Packet 7
Packet 8
Packet 9
Packet 10

Packet processing is decomposed 
into a directed graph node …

… packets moved through 
graph nodes in vector …

CPU

… graph nodes are optimized 
to fit inside the instruction cache …

… packets are pre-fetched, 
into the data cache …

Instruction Cache 
(per core)

Data Cache 
(L2 & L3)



VPP Performance

ACM MMSys 2019

14

IPv4 Routing IPv6 Routing

64B

128B

I/O	NIC	max-pps0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

No.	of	Interfaces
No.	of	CPU Cores

Frame
Size

[Bytes]

Service	Scale	=	1	million	IPv4	route	entries

Packet	Throughput	[Mpps]
NDR - Zero	Frame	Loss

actual	m-core	scaling	
(mid-points	interpolated)

24 45.36 66.72 88.08 109.44 130.8

IPv4	Thput	[Mpps] 2x	40GE
2	core

4x	40GE
4	core

6x	40GE
6	core

8x	40GE
8	core

10x	40GE
10	core

12x	40GE
12	core

64B 24.0 45.4 66.7 88.1 109.4 130.8
128B 24.0 45.4 66.7 88.1 109.4 130.8
IMIX 15.0 30.0 45.0 60.0 75.0 90.0
1518B 3.8 7.6 11.4 15.2 19.0 22.8

I/O	NIC	max-pps
35.8 71.6 107.4 143.2 179 214.8

NIC	max-bw 46.8 93.5 140.3 187.0 233.8 280.5

64B

128B

I/O	NIC	max-pps0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

No.	of	Interfaces
No.	of	CPU Cores

Frame
Size

[Bytes]

Service	Scale	=	0.5	million	IPv6	route	entries

Packet	Throughput	[Mpps]
NDR - Zero	Frame	Loss

actual	m-core	scaling	
(mid-points	interpolated)

19.2 35.36 51.52 67.68 83.84 100

IPv6	Thput	[Mpps]
2x	40GE
2	core

4x	40GE
4	core

6x	40GE
6	core

8x	40GE
8	core

10x	40GE
10	core

12x	40GE
12	core

64B 19.2 35.4 51.5 67.7 83.8 100.0
128B 19.2 35.4 51.5 67.7 83.8 100.0
IMIX 15.0 30.0 45.0 60.0 75.0 90.0
1518B 3.8 7.6 11.4 15.2 19.0 22.8

I/O	NIC	max-pps
35.8 71.6 107.4 143.2 179 214.8

NIC	max-bw 46.8 93.5 140.3 187.0 233.8 280.5



Why do Computing on Switches?

¨ Need wire-speed performance
¤ Especially when you can’t control the input arrival rate

¨ Application performance gains in:
¤ latency
¤ throughput

¨ Separate security perimeter from server hardware/management
¨ Resilience/robustness benefits

¤ Fallback processing (e.g. caching)
¤ Rerouting if there are partitions or server complex failures

¨ Split processing (control plane on server, data plane on switch)

ACM MMSys 2019

15



Interesting Example: Distributed Consensus

¨ Consensus an important bottleneck for many
distributed systems

¨ Paxos on switch in P4
¤ Work divided among switches and hosts
¤ Low latency and scales well

¨ Consensus in a Box – dedicated hardware
¤ Distributed Key-Value Store
¤ Millions of consensus ops/sec

ACM MMSys 2019

16



Interesting example: Load balancing

¨ High cost: 
¤ 1K servers (~4% of all servers) for a cloud 

with 10 Tbps
¨ High latency and jitter: 

¤ add 50-300 μs delay for 10 Gbps in a 
server

¨ Poor performance isolation: 
¤ one “Virtual IP” under attack can affect other 

VIPs

¨ Throughput: full line rate of 6.5 Tbps
¤ one switch can replace up to 100s of software load 

balancers
n save power by 500x and capital cost by 250x

¤ Sub-microsecond ingress-to-egress processing latency

¨ Robustness against attacks and performance 
isolation
¤ high capacity to handle attacks: use hardware rate-

limiters for performance isolation

¨ Can program necessary functions in P4
¨ Challenges:

¤ Limited SRAM and TCAM for mapping tables
¤ Disruptive to data structures when server pool 

changes

17

ACM MMSys 2019

Server-based Switch-based (Tofino)



Interesting Example: Packet caches for KV Stores

¨ Skewed load puts hot spots on servers
¨ Caching KV entries on switches lowers load
¨ Example: NetCache [SOSP 2017]

ACM MMSys 2019

18



Summing up – Servers versus Switches

¨ Many cycles/bit
¨ Memory intensive

¤ Either lots of state or high 
creation/destruction rate

¨ Scalable load
¨ Rapid feature evolution
¨ Need isolation / multi-tenant

¨ Few cycles/bit
¨ Small/moderate memory 

¤ But run at clock rate w/o caches

¨ Need to process input at wire 
rate

¨ Simple, “inner loops”
¨ Works if crypto not an issue

19

ACM MMSys 2019

Servers Switches



20

Edge Computing!!
aka: Computing in the Network or COIN

Digression…Where the rubber meets the cloud

ACM MMSys 2019



COIN: “Computing in the Network”
¨ Two environments: Data Center and Network Edge
¨ Most of the discussion/noise presently is about:

¤ Politics and industry structure
¤ Putting both computing and networking out at the edge 

n as opposed to combining them – which is what this talk is mostly about.
¨ Who owns the resources? Who controls the deployments? Who defines the 

architectures? Tussle between:
¤ ISPs and Mobile operators, who own the network edge real estate and the

communication equipment, but not the computing
¤ Cloud operators, who own the data centers and the computing architecture, but not the 

communication resources at the edge
¨ There are some interesting technical questions though, worth mentioning here

ACM MMSys 2019

21



Use Cases- VR/AR

ACM MMSys 2019 22



Use Case: Upstream Data flows (a.k.a. reverse CDN)

ACM MMSys 2019 23



Use Case: Distributed Machine Learning

ACM MMSys 2019 24

¨ Time-sensitive decision making at the edge
¤ Training in the cloud
¤ Inference at the edge



What do we need to make this work?

ACM MMSys 2019 25

¨ Intelligent placement of computing
¤ Joint optimization of network resources and computing resrouces
¤ Visibility into network state/metrics by the application programmer (or at least in 

the framework) 
¨ Lay out processing graphs flexibly – react to medium-timescale changes 

¤ Conditions may change dynamically and constantly: network to adapt to 
application requirements, network conditions etc. 

¨ Sometimes we can move functions instead of data (close to big data assets) 
¨ At other times we gradually move data where it is needed (e.g., where 

specific computations run) 
¨ Optimization based on application requirements & view of all relevant 

resources 



What does the future hold?

(GET READY TO BE A BIT DEPRESSED)

26

Much of this material stolen from 
Distinguished Lecturer talk by John 
Hennessey at MIT CSAIL, April 2019



End of an Era
¨ 40 years of stunning progress in microprocessor design

¤ 1.4x annual improvement for 40+ years ≈ 106 x faster
¨ Three architectural innovations

¤ Width: 8⇒16⇒64 bits (~4x)
¤ Instruction level parallelism: 

n 4-10 cycles/instruction ⇒ 4+ instructions/cycle (~10-20x)
¤ Multicore: 

n one processor to ≥ 32
¨ Clock Rate: 3Mhz ⇒ 4 Ghz
¨ IC Technology:

¤ Moore’s law: growth in transistor count
¤ Dennard Scaling: power/transistor shrinks as speed & density increase

ACM MMSys 2019

27



What’s changed? - Moore’s Law 

Slowdown in Moore’s law: transistors cost (even when unused)

ACM MMSys 2019

28

Highest SPECInt (single core) – Hennessey & Patterson [2018] Moore’s Law in DRAM



What’s changed? – Dennard Scaling

¨ Processors have reached power limit
¤ Thermal dissipation maxed out
¤ Packaging only helps a bit – heat and 

battery are limits
¨ Popular architectural techniques also 

reached limits
¤ 1982-2005: Instruction-level parallelism 

(compiler and processor find it)
¤ 2005-2017: Multicore (programmer 

finds parallelism)
¤ Caches: diminishing returns

n Lots more transistors for small gain in hit 
rate

29

ACM MMSys 2019



Instruction Level Parallelism
¨ Pipelining: 5 stages ⇒ 15+ stages to allow faster clock (22 if 

you include pre-fetch)
¤ Energy penalty neutralized by Dennard scaling

¨ Multiple Issue: <1 instruction/clock ⇒ 4+ instructions/clock
¤ Significant increase in transistors

¨ Why did it end: diminishing returns in efficiency
¤ Branches and memory aliasing are major limit

n need > 60 instructions in flight
¤ Need speculation ⇒ predict program behavior
¤ Must be very good

n 15-deep pipeline: ~4 branches 94% correct requires 98.7% 
accuracy

n 60-instrucitons in flight: ~15 branches 90% requires 99% accuracy
¨ New concern: Meltdown & Spectre!!!!

ACM MMSys 2019

30

Wasted Work on Intel Core I7



Multicore

¨ Make Programmer responsible for identifying 
parallelism via threads

¨ Put threads on multiple cores
¨ Increase cores as transistor count goes up
¨ Energy ≈ Transistor count ≈ Active cores
¨ So we need performance ≈ Active cores
¨ But… Amdahl’s law says this is highly unlikely

¤ See this also in tail latency as slowest instance 
dominates

ACM MMSys 2019

31



Multicore and Power Limit – Dennard Scaling problems

¨ Can’t run all cores at full clock rate or chip melts!
¨ Example – 14 nm process 

¤ Intel E7-8890: 24 core, 2.2 Ghz, TDP = 165W power limit
¤ Turbo mode All cores @ 3.4 GHz = 255W!

¨ Estimate – 7 nm process
¤ 64 cores power unconstrained: 6 Ghz & 365 W
¤ 64 cores power constrained: 4 Ghz & 250 W

ACM MMSys 2019

32

Power Limit Active Cores

180 W 46/64

200 W 51/64

220 W 56/64



Where does the energy go?

ACM MMSys 2019

33

Function Energy in Picojoules

8-bit add 0.03

32-bit add 0.1

FP Multiple 16-but 1.1

FP Multiply 32-bit 1.1

Register access 6

Control (per-instruction, superscalar) 20-40

L1 cache access 10

L2 cache access 20

L3 cache access 100

Off-chip DRAM access 1,300-2,600

From Horowitz 
[2018]



Software Bloat makes things worse

Matrix Multiply: relative speedup versus Python (18 core Intel)

ACM MMSys 2019

34

From “There’s plenty 
of room at the top” –
Leierson et. al.



What does this mean for networking on CPUs?

¨ Reaching some difficult limits
¤ DRAM latency, L3 Cache eviction
¤ Core count

¨ Single DRAM access:
¤ 100-Gb/s 20 cores are required. 
¤ 400-Gb/s 79 physical cores 

¨ Result: Massive packet drops @ ≥100 Gb/s
¨ Implications:

¤ Switch to SRAM: $$$ and power
¤ Need explicit programmer control to defeat 

cache eviction 

ACM MMSys 2019

35



Where to go from here? Domain-Specific Architectures 

¨ Tailor Architecture to problem domain (n.b. - not a strict ASIC approach)
¤ Already have: GPUs for graphics and virtual reality
¤ Emerging: Neural Network processors (e.g. Google TPU)
¤ Promising: Programmable switching silicon (e.g. P4 or something more powerful)

ACM MMSys 2019

36



Can we apply this to Networking?

¨ GPUs for Networking? Initial Results not Encouraging:
¤ Long setup times ⇒ Big batches ⇒ Increased forwarding latency
¤ Need random memory access, but GPUs optimized for contiguous access

ACM MMSys 2019

37



Some interesting outstanding questions

¨ Smart NICs have FPGAs – what’s the best way to use them?
¨ Figure out how to use P4 on switches for general computing?
¨ How to bridge the gap in the programming model?

¤ What is imperative/functional versus what is done data-flow
¨ What do the platforms look like?

¤ Heterogenous elements closely coupled internally, with conventional network 
externally, or

¤ Heterogenous elements with custom ”internal” network built scale-out, with 
conventional network connecting the complexes, or

¤ Some hybrid with multiple parallel interconnects
n Note: Microsoft tried this with FPGA’s to scale Bing search

ACM MMSys 2019

38



That’s it! Questions?
Comments?
Discussion?

ACM MMSys 2019

39



Backup



Linux Kernel - Network Subsystem

System Call Interface

User

Kernel
Interrupts

Soft IRQs

Lists

UDP

Wait 
Queues

Hardware

Timers

Intel E1000

E1000 
driver

Application

Intel E1000

Hash 
Tables

Synch 
& 

Atomic 
Ops

E1000 
driver

Sockets

ip_proto

TCP SCTP

data link layer

ARPIPV4 IPV6 bridging

ICMP

sk_buff

net_devic
e

U/K 
copy 

DMAPCI

Mem 
Alloc

Notifiers

VFS
sock

socket


